Detect and Protect

AOC Europe Online Summit

Supporting EMSOs through Edge AI and Cloud Native Computing

Marco Kullmann Spectrum Dominance and Airborne Solutions Division Head of Processing and Software Solutions May 18th 2021

Driving Factors for AI based EW Sensors

Challenges of Modern Signal Scenarios

- EW systems need to operate in congested RF environments
- modern software define radars have very high dynamic signal parameters
- need to identify and jam agile emitter (e.g. cognitive radars)
- short reaction times required
- → need to adapt sensors to new threats quickly without changing the sensors code base
- → update of threats libraries (hours instead of weeks or months)
- \rightarrow new concepts for pattern recognition required

Artificial Intelligence for EW Applications Simplified System Modell for Bringing Al into Operation

Smart Sensor ("Edge Al")

- AI algorithms (DL, CNN, RNN, reinforcement learning, ...)
- efficient compute HW for inference

Datacenter

- storing of sensor data ("Big Data")
- sensor data fusion & pre-processing
- data annotation (manual & semiautomatic)
- data augmentation
- ML training (supervised & un-supervised)

Smart Sensors

Examples of AI algorithms

Detect and Protect

This document and its content is the property of HENSOLDT Sensors GmbH. It shall not be communicated to any third party without the owner's written consent. © Copyright HENSOLDT Sensors GmbH 2020. All rights reserved

Deep Learning Applications for EW Application Examples of Senor Data Processing (Edge AI)

Deep Learning Applications for EW Application Examples of Senor Data Processing (Edge AI)

SIGINT – Signal Detection and Classification based on Spectrograms

Semantic Segmentation using Deep Learning Networks

- better and more robust detection and classification results
- add new classes with Deep Learning with little effort without altering code base.
- simplified system architecture, detection based on raw data classifier training "end-to-end".

26 May 2021

AOC Europe Online Summit

RF Spectrogram Object Detection

picture dimension e.g.: 15360x7500 (nFFT x timesteps / 125Hz@8ms / 2MHzx60sec)

43x22=946 Patches à 512x512pcs@30% overlap

Detect and Protect

26 May 2021

This document and its content is the property of HENSOLDT Sensors GmbH. It shall not be communicated to any third party without the owner's written consent. © Copyright HENSOLDT Sensors GmbH 2020. All rights reserve

Learned Instance Merger to generate signals

Detect and Protect

26 May 2021

Deep Learning Applications for EW Application Examples of Senor Data Processing (Edge AI)

Detect and Protect

26 May 2021

Intelligent Cognitive Core for EA System Simplified System Model

Reinforcement learning for selection and configuration of best jamming strategy against unknown emitters.

26 May 2021

Intelligent Cognitive Core for EA System Reinforcement Learning for ECM – Measured Results

Noise Jamming Technique 1.5 1 **Rx Signal** 0.5 Amplitude 0 **ESM** Time Slots -0.5 **RL** Policy -1 -1.5 Noise-Jamming - Target-Return ECM vector -2 N Ν N Ν Ν Ν Ν Ν 500 2000 0 1000 1500 2500 3000 3500 4000 Range Bins Pulsed Noise (Narrowband) ECM Tx Signal ••• •••

Deep Learning Networks

Comparison with Traditional Pattern Recognition Systems

Traditional Pattern Recognition (feature extraction: "hand-crafted" based on mathematical models)

Deep Learning (feature extraction end-to-end based on training data only

huge amount of real world training data required for training of deep learning networks

AI / Deep Learning Paradigm Shift in Pattern Recognition

- shift from mathematical system model to a data centric machine learning approach (data science)
- performance driver: data, data, data (availability of large amount of representative labeled sensor data)

New solutions required for:

- data acquisition/recording,
- data storage
- data management

26 May 2021

New Collaboration Models between Armed Forces and Industry Example: EW Centre / EW Support

Datacenter

New technology stack for future AI based applications

Datacenter in Detail

Custom Application Software vs. Cloud Software Stack (Simplified Example)

Traditional custom application software:

- requires lots of coding (development cost)
- little support for AI, big data
- no standardization and interoperability
- limited support for IT-platform consolidation
- high training and maintenance costs

Datacenter in Detail

Cloud Software Stack (Simplified Example)

Cloud Native Technology Stack:

- platform build around "apps"
- many system functions are build into the platform (less development effort)
- platform designed for Big Data and Al
- build-in IT security and secure connectivity
- automated SW deployment
- standardized interfaces
- harmonized system and SW maintenance
- simplifies IT system consolidation

19

Global C4ISR Market TOP7 Ranking 2021

Detect and Protect

20

Summary

Summary

• Al will be key element of future intelligent sensors

- increased performance and robustness
- quick adaption to new threats
- allowing better situational awareness and faster discission making

• Al requires end-to-end view of full EW lifecycle

- new generation of AI enabled sensors
- data acquisition (recording of sensor raw data from real world scenarios)
- new generation of datacenters for big data, analytics and AI training required
- Challenges
 - success stories of civil applications still need to be transferred to the military domain and tested in operational scenarios.
 - datacenter consolidation requires open standards for cloud software stacks
 - classified data requires cloud solutions to be operated on-premise
 - high quality data recorded from real world scenarios is essential
- New Cooperation Models between Industry and Armed Forces Required
 - New ways of sharing data and joint continuous optimization

HENSOLDT Sensors GmbH

Marco Kullmann Wörthstrasse 85 89077 Ulm, Germany email: marco.kullmann@hensoldt.net HENSOLDT Sensors GmbH Willy-Messerschmitt-Straße 3 82024 Taufkirchen, Germany

